References
Cited works referenced throughout the Lyn Gitbook.
References
[1] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representa- tions. Advances in neural information processing systems, 33:12449–12460, 2020.
[2] Melissa Bond, Hassan Khosravi, Maarten De Laat, Nina Bergdahl, Vio- leta Negrea, Emily Oxley, Phuong Pham, Sin Wang Chong, and George Siemens. A meta systematic review of artificial intelligence in higher edu- cation: a call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1):4, 2024.
[3] Andr´es Bruhn, Joachim Weickert, and Christoph Schn¨orr. Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. In- ternational journal of computer vision, 61:211–231, 2005.
[4] Kuang-Yu Chang, Kung-Hung Lu, and Chu-Song Chen. Aesthetic critiques generation for photos. In Proceedings of the IEEE international conference on computer vision, pages 3514–3523, 2017.
[5] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7310–7320, 2024.
[6] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- \sigma: Weak-to-strong training of diffusion transformer for 4k text-to- image generation. arXiv preprint arXiv:2403.04692, 2024. 57
[7] Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, and Jiaqi Wang. Sharegpt4video: Improving video understanding and generation with better captions, 2024.
[8] Zehua Chen, Yihan Wu, Yichong Leng, Jiawei Chen, Haohe Liu, Xu Tan, Yang Cui, Ke Wang, Lei He, Sheng Zhao, et al. Resgrad: Residual de- noising diffusion probabilistic models for text to speech. arXiv preprint arXiv:2212.14518, 2022.
[9] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers. Advances in neural information processing systems, 34:19822–19835, 2021.
[10] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image generation via hierarchical transformers. Advances in Neural Information Processing Systems, 35:16890–16902, 2022.
[11] Nikita Drobyshev, Jenya Chelishev, Taras Khakhulin, Aleksei Ivakhnenko, Victor Lempitsky, and Egor Zakharov. Megaportraits: One-shot megapixel neural head avatars. In Proceedings of the 30th ACM International Con- ference on Multimedia, pages 2663–2671, 2022.
[12] Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou Wang. Percep- tual quality assessment of smartphone photography. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3677–3686, 2020.
[13] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394, 2023.
[14] Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint arXiv:2405.16712, 2024.
[15] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa matter: Elevating the role of image under- standing in visual question answering. In Proceedings of the IEEE confer- ence on computer vision and pattern recognition, pages 6904–6913, 2017.
[16] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.
[17] Albert Gu, Karan Goel, and Christopher R´e. Efficiently modeling long sequences with structured state spaces. arXiv preprint arXiv:2111.00396, 2021. 58
[18] Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun Bao, and Juy- ong Zhang. Ad-nerf: Audio driven neural radiance fields for talking head synthesis. In Proceedings of the IEEE/CVF international conference on computer vision, pages 5784–5794, 2021. [19] Muyang He, Yexin Liu, Boya Wu, Jianhao Yuan, Yueze Wang, Tiejun Huang, and Bo Zhao. Efficient multimodal learning from data-centric per- spective. arXiv preprint arXiv:2402.11530, 2024.
[20] Shuai He, Anlong Ming, Yaqi Li, Jinyuan Sun, ShunTian Zheng, and Huadong Ma. Thinking image color aesthetics assessment: Models, datasets and benchmarks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 21838–21847, 2023.
[21] Stefan Hrastinski and Petar Jandri´c. Imagining education futures: Re- searchers as fiction authors. Postdigital Science and Education, 5(3):509– 515, 2023.
[22] Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu, Chenye Cui, and Yi Ren. Prodiff: Progressive fast diffusion model for high-quality text- to-speech. In Proceedings of the 30th ACM International Conference on Multimedia, pages 2595–2605, 2022.
[23] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate flow estimation for video frame interpolation. In European Conference on Computer Vision, pages 624–642. Springer, 2022.
[24] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real- world visual reasoning and compositional question answering. In Proceed- ings of the IEEE/CVF conference on computer vision and pattern recogni- tion, pages 6700–6709, 2019.
[25] Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu, et al. Trans- fer learning from speaker verification to multispeaker text-to-speech syn- thesis. In Advances in neural information processing systems, 2018.
[26] Esperanza Johnson, Ram´on Herv´as, Carlos Guti´errez L´opez de la Franca, Tania Mond´ejar, Sergio F Ochoa, and Jes´us Favela. Assessing empathy and managing emotions through interactions with an affective avatar. Health informatics journal, 24(2):182–193, 2018.
[27] Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu Xiong, Qiang Xu, and Ying Shan. Miradata: A large-scale video dataset with long durations and structured captions, 2024.
[28] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational au- toencoder with adversarial learning for end-to-end text-to-speech. In Inter- national Conference on Machine Learning, pages 5530–5540. PMLR, 2021. 59
[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient mem- ory management for large language model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pages 611–626, 2023.
[30] PKU-Yuan Lab and Tuzhan AI etc. Open-sora-plan, April 2024.
[31] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvganhuang2022real: A universal neural vocoder with large-scale training. arXiv preprint arXiv:2206.04658, 2022.
[32] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking multimodal llms with generative com- prehension. arXiv preprint arXiv:2307.16125, 2023.
[33] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. Control- lable text-to-image generation. Advances in neural information processing systems, 32, 2019.
[34] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 292–305, Singapore, December 2023. Association for Computational Linguistics.
[35] Minghui Liao, Zhisheng Zou, Zhaoyi Wan, Cong Yao, and Xiang Bai. Real- time scene text detection with differentiable binarization and adaptive scale fusion. IEEE transactions on pattern analysis and machine intelligence, 45(1):919–931, 2022.
[36] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating hallucination in large multi-modal models via robust instruction tuning. In The Twelfth International Conference on Learning Representations, 2023.
[37] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual in- struction tuning. In Thirty-seventh Conference on Neural Information Pro- cessing Systems, 2023.
[38] Songxiang Liu, Dan Su, and Dong Yu. Diffgan-tts: High-fidelity and efficient text-to-speech with denoising diffusion gans. arXiv preprint arXiv:2201.11972, 2022.
[39] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal model an all-around player? arXiv:2307.06281, 2023. 60
[40] Yuanxin Liu, Lei Li, Shuhuai Ren, Rundong Gao, Shicheng Li, Sishuo Chen, Xu Sun, and Lu Hou. Fetv: A benchmark for fine-grained evaluation of open-domain text-to-video generation. Advances in Neural Information Processing Systems, 36, 2024.
[41] Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fer- nando De La Torre, and Yaser Sheikh. Pixel codec avatars. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni- tion, pages 64–73, 2021.
[42] Microsoft. Phi-2: The surprising power of small language models, 2023.
[43] Naila Murray, Luca Marchesotti, and Florent Perronnin. Ava: A large- scale database for aesthetic visual analysis. In 2012 IEEE conference on computer vision and pattern recognition, pages 2408–2415. IEEE, 2012.
[44] OpenAI. Gpt-4v(ision) system card, 2024.
[45] Jonas Oppenlaender. The creativity of text-to-image generation. In Pro- ceedings of the 25th international academic mindtrek conference, pages 192– 202, 2022.
[46] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A diffusion probabilistic model for text-to- speech. In International Conference on Machine Learning, pages 8599– 8608. PMLR, 2021.
[47] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, pages 8821– 8831. Pmlr, 2021.
[48] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie- Yan Liu. Fastspeech 2: Fast and high-quality end-to-end text to speech. arXiv preprint arXiv:2006.04558, 2020.
[49] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech: Fast, robust and controllable text to speech. In Advances in neural information processing systems, 2019.
[50] Christoph Schuhmann. Clip+mlp aesthetic score predictor, 2022.
[51] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Con- ceptual captions: A cleaned, hypernymed, image alt-text dataset for au- tomatic image captioning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2556–2565, 2018.
[52] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint arXiv:2303.01469, 2023. 61
[53] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.
[54] Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v-compbench: A comprehensive benchmark for compositional text-to-video generation. arXiv preprint arXiv:2407.14505, 2024.
[55] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint arXiv:2406.06525, 2024.
[56] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale predic- tion. arXiv preprint arXiv:2404.02905, 2024.
[57] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie- Anne Lachaux, Timoth´ee Lacroix, Baptiste Rozi`ere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation lan- guage models, 2023.
[58] Henriikka Vartiainen and Matti Tedre. Using artificial intelligence in craft education: crafting with text-to-image generative models. Digital Creativ- ity, 34(1):1–21, 2023.
[59] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
[60] Veera Vimpari, Annakaisa Kultima, Perttu H¨am¨al¨ainen, and Christian Guckelsberger. “an adapt-or-die type of situation”: Perception, adoption, and use of text-to-image-generation ai by game industry professionals. Pro- ceedings of the ACM on Human-Computer Interaction, 7(CHI PLAY):131– 164, 2023.
[61] Ivan Vovk, Tasnima Sadekova, Vladimir Gogoryan, Vadim Popov, Mikhail A Kudinov, and Jiansheng Wei. Fast grad-tts: Towards efficient diffusion-based speech generation on cpu. In Interspeech, pages 838–842, 2022.
[62] Deliang Wang, Yang Tao, and Gaowei Chen. Artificial intelligence in class- room discourse: A systematic review of the past decade. International Journal of Educational Research, 123:102275, 2024.
[63] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot free-view neural talking-head synthesis for video conferencing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10039–10049, 2021. 62
[64] Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang, and Benyou Wang. Longllava: Scaling multi-modal llms to 1000 images efficiently via hybrid architecture, 2024.
[65] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, and Andreas Geiger. Unifying flow, stereo and depth estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
[66] Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang, Xin Tong, and Baining Guo. Vasa-1: Lifelike audio-driven talking faces generated in real time. arXiv preprint arXiv:2404.10667, 2024.
[67] Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian Tang, Shang Yang, Zhijian Liu, Ethan He, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Linxi Fan, Yuke Zhu, Yao Lu, and Song Han. Longvila: Scaling long-context visual language models for long videos, 2024.
[68] Dongjie Yang, Suyuan Huang, Chengqiang Lu, Xiaodong Han, Haoxin Zhang, Yan Gao, Yao Hu, and Hai Zhao. Vript: A video is worth thousands of words, 2024.
[69] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Leslie Kaelbling, Dale Schuurmans, and Pieter Abbeel. Learning inter- active real-world simulators, 2024.
[70] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image genera- tion. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.
[71] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Bo- tao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reason- ing benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.
[72] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sig- moid loss for language image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 11975–11986, October 2023.
[73] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image diffusion models in generative ai: A survey. arXiv preprint arXiv:2303.07909, 2023. 63
[74] Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision, 2024.
[75] Qian Zhang, Xiangzi Dai, Ninghua Yang, Xiang An, Ziyong Feng, and Xingyu Ren. Var-clip: Text-to-image generator with visual auto-regressive modeling. arXiv preprint arXiv:2408.01181, 2024.
[76] Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and Fei Wang. Sadtalker: Learning realistic 3d motion coefficients for stylized audio-driven single image talking face animation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8652–8661, 2023.
[77] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan. Flow-guided one- shot talking face generation with a high-resolution audio-visual dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3661–3670, 2021.
[78] Bo Zhao, Boya Wu, and Tiejun Huang. Svit: Scaling up visual instruction tuning. arXiv preprint arXiv:2307.04087, 2023.
[79] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gon- zalez, et al. Sglang: Efficient execution of structured language model pro- grams, 2023.
[80] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang You. Open-sora: Democ- ratizing efficient video production for all, March 2024.
[81] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
[82] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria, Evangelos Kalogerakis, and Dingzeyu Li. Makelttalk: speaker-aware talking-head animation. ACM Transactions On Graphics (TOG), 39(6):1–15, 2020.
Last updated